
Linear Schemas for Program Dependence

ASTReNet Workshop 13
BCS

Sebastian Danicic

March 21, 2007

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 1 / 51



Linear Schemas for Program Dependence EP/E002919/1

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 2 / 51



Linear Schemas for Program Dependence EP/E002919/1

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 2 / 51



Linear Schemas for Program Dependence EP/E002919/1

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 2 / 51



Linear Schemas for Program Dependence EP/E002919/1

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 2 / 51



Linear Schemas for Program Dependence EP/E002919/1

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 2 / 51



Linear Schemas for Program Dependence EP/E002919/1

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 2 / 51



Linear Schemas for Program Dependence EP/E002919/1

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 2 / 51



This Talk

1 People in the Schemas Project

2 Program Dependence - Examples

3 Using Schemas gives more accurate notios of Dependence

4 Some Schema Theory

5 Open Problems in Schema Theory

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 3 / 51



This Talk

1 People in the Schemas Project

2 Program Dependence - Examples

3 Using Schemas gives more accurate notios of Dependence

4 Some Schema Theory

5 Open Problems in Schema Theory

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 3 / 51



This Talk

1 People in the Schemas Project

2 Program Dependence - Examples

3 Using Schemas gives more accurate notios of Dependence

4 Some Schema Theory

5 Open Problems in Schema Theory

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 3 / 51



This Talk

1 People in the Schemas Project

2 Program Dependence - Examples

3 Using Schemas gives more accurate notios of Dependence

4 Some Schema Theory

5 Open Problems in Schema Theory

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 3 / 51



This Talk

1 People in the Schemas Project

2 Program Dependence - Examples

3 Using Schemas gives more accurate notios of Dependence

4 Some Schema Theory

5 Open Problems in Schema Theory

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 3 / 51



People

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 4 / 51



Mark Harman(C.I. –Kings)

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 5 / 51



Rob Hierons (C.I. –Brunel)

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 6 / 51



Chris Fox (Essex)

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 7 / 51



Lahcen Ouarbya (Goldsmiths)

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 8 / 51



Mike Laurence (R.A. –Goldsmiths)

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 9 / 51



Dr. John Howroyd (Industrial Collaborator–@UK PLC)

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 10 / 51



Elaine Weyuker (Industrial Collaborator–AT&T Labs
Research)

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 11 / 51



Sebastian Danicic (P.I.–Goldsmiths)

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 12 / 51



What is Program Dependence?

. . . it is static analysis of a program to find out which components affect
which other components.

It enables us to answer questions like:

Which bits of big program P affect the final value of variable x?

Which bits of big program P affect the updating of this file?

What will be the impact of changing this bit of code here?

Which variables affect the value of this condition here?

Which bits of big program P affect the firing of this missile?

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 13 / 51



What is Program Dependence?

. . . it is static analysis of a program to find out which components affect
which other components.
It enables us to answer questions like:

Which bits of big program P affect the final value of variable x?

Which bits of big program P affect the updating of this file?

What will be the impact of changing this bit of code here?

Which variables affect the value of this condition here?

Which bits of big program P affect the firing of this missile?

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 13 / 51



What is Program Dependence?

. . . it is static analysis of a program to find out which components affect
which other components.
It enables us to answer questions like:

Which bits of big program P affect the final value of variable x?

Which bits of big program P affect the updating of this file?

What will be the impact of changing this bit of code here?

Which variables affect the value of this condition here?

Which bits of big program P affect the firing of this missile?

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 13 / 51



What is Program Dependence?

. . . it is static analysis of a program to find out which components affect
which other components.
It enables us to answer questions like:

Which bits of big program P affect the final value of variable x?

Which bits of big program P affect the updating of this file?

What will be the impact of changing this bit of code here?

Which variables affect the value of this condition here?

Which bits of big program P affect the firing of this missile?

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 13 / 51



What is Program Dependence?

. . . it is static analysis of a program to find out which components affect
which other components.
It enables us to answer questions like:

Which bits of big program P affect the final value of variable x?

Which bits of big program P affect the updating of this file?

What will be the impact of changing this bit of code here?

Which variables affect the value of this condition here?

Which bits of big program P affect the firing of this missile?

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 13 / 51



What is Program Dependence?

. . . it is static analysis of a program to find out which components affect
which other components.
It enables us to answer questions like:

Which bits of big program P affect the final value of variable x?

Which bits of big program P affect the updating of this file?

What will be the impact of changing this bit of code here?

Which variables affect the value of this condition here?

Which bits of big program P affect the firing of this missile?

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 13 / 51



What is Program Dependence?

. . . it is static analysis of a program to find out which components affect
which other components.
It enables us to answer questions like:

Which bits of big program P affect the final value of variable x?

Which bits of big program P affect the updating of this file?

What will be the impact of changing this bit of code here?

Which variables affect the value of this condition here?

Which bits of big program P affect the firing of this missile?

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 13 / 51



Applications of Dependence Analysis

Program Comprehension

Program Debugging

Program Re-factoring

Program Testing

Program Security

Program Slicing

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 14 / 51



Applications of Dependence Analysis

Program Comprehension

Program Debugging

Program Re-factoring

Program Testing

Program Security

Program Slicing

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 14 / 51



Applications of Dependence Analysis

Program Comprehension

Program Debugging

Program Re-factoring

Program Testing

Program Security

Program Slicing

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 14 / 51



Applications of Dependence Analysis

Program Comprehension

Program Debugging

Program Re-factoring

Program Testing

Program Security

Program Slicing

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 14 / 51



Applications of Dependence Analysis

Program Comprehension

Program Debugging

Program Re-factoring

Program Testing

Program Security

Program Slicing

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 14 / 51



Applications of Dependence Analysis

Program Comprehension

Program Debugging

Program Re-factoring

Program Testing

Program Security

Program Slicing

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 14 / 51



Application of Dependence – Program Slicing

Program Slicing gives us different views of the same program
...depending what we are interested in.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 15 / 51



Application of Dependence – Program Slicing

Program Slicing gives us different views of the same program

...depending what we are interested in.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 15 / 51



Application of Dependence – Program Slicing

Program Slicing gives us different views of the same program
...depending what we are interested in.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 15 / 51



Commercial Slicing Tools: Kaveri/Indus

Kaveri is an eclipse plug-in front-end for the Indus Java slicer. It utilizes
the Indus program slicer to calculate slices of Java programs and then

displays the results visually in the editor. The purpose of this project is to
create an effective tool for simplifying program understanding, program

analysis, program debugging and testing.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 16 / 51



Commercial Slicing Tools: Codesurfer

“The backward slice from a program point p includes all points that may
influence whether control reaches p, and all points that may influence the

values of the variables used at p when control gets there.”

What does may mean?

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 17 / 51



Commercial Slicing Tools: Codesurfer

“The backward slice from a program point p includes all points that may
influence whether control reaches p, and all points that may influence the

values of the variables used at p when control gets there.”
What does may mean?

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 17 / 51



How Program Dependence is Calculated

1

2

3
4

5

while (i<k)
do
begin

if (c<k)

{
z=7;
c=y+c;

}
i=i+1;

end

First convert the program into a Control Flow Graph

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 18 / 51



How Program Dependence is Calculated

1

2

3
4

5

while (i<k)
do
begin

if (c<k)

{
z=7;
c=y+c;

}
i=i+1;

end

First convert the program into a Control Flow Graph

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 18 / 51



Data and Control Dependence

And then “chase back” the dependencies”

Final value of z is data dependent on (3)
(3) is control dependent on (2)
(2) is data dependent (loop carried) on (4)
(2) is control dependent on (1)
(1) is data dependent on (5)

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 19 / 51



Data and Control Dependence

And then “chase back” the dependencies”

Final value of z is data dependent on (3)

(3) is control dependent on (2)
(2) is data dependent (loop carried) on (4)
(2) is control dependent on (1)
(1) is data dependent on (5)

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 19 / 51



Data and Control Dependence

And then “chase back” the dependencies”

Final value of z is data dependent on (3)
(3) is control dependent on (2)

(2) is data dependent (loop carried) on (4)
(2) is control dependent on (1)
(1) is data dependent on (5)

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 19 / 51



Data and Control Dependence

And then “chase back” the dependencies”

Final value of z is data dependent on (3)
(3) is control dependent on (2)
(2) is data dependent (loop carried) on (4)

(2) is control dependent on (1)
(1) is data dependent on (5)

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 19 / 51



Data and Control Dependence

And then “chase back” the dependencies”

Final value of z is data dependent on (3)
(3) is control dependent on (2)
(2) is data dependent (loop carried) on (4)
(2) is control dependent on (1)

(1) is data dependent on (5)

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 19 / 51



Data and Control Dependence

And then “chase back” the dependencies”

Final value of z is data dependent on (3)
(3) is control dependent on (2)
(2) is data dependent (loop carried) on (4)
(2) is control dependent on (1)
(1) is data dependent on (5)

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 19 / 51



Data and Control Dependence

And then “chase back” the dependencies”

Final value of z is data dependent on (3)
(3) is control dependent on (2)
(2) is data dependent (loop carried) on (4)
(2) is control dependent on (1)
(1) is data dependent on (5)

Slicing Algorithms compute the transitive closure of the union of the data
and control dependence relations.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 19 / 51



Slicing Example

Of course, we can compute the dependencies without the CFG.

Which
lines of this program affect the final value of z?

while (i<k)

<-----

{
if (c<5)

<-----

{
z=7;

<-----

c=y+c;

<-----

}
i=i+1;

<-----

}

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 20 / 51



Slicing Example

Which lines of this program affect the final value of z?

while (i<k)

<-----

{
if (c<5)

<-----

{
z=7;

<-----

c=y+c;

<-----

}
i=i+1;

<-----

}

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 20 / 51



Slicing Example

Which lines of this program affect the final value of z?

while (i<k)

<-----

{
if (c<5)

<-----

{
z=7;

<-----

c=y+c;

<-----

}
i=i+1;

<-----

}

Conventional Program Slicers like Codesurfer will say “all of them!”

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 20 / 51



Slicing Example

Which lines of this program affect the final value of z?

while (i<k)

<-----

{
if (c<5)

<-----

{
z=7;

<-----

c=y+c;

<-----

}
i=i+1;

<-----

}

but why?

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 20 / 51



Slicing Example

Which lines of this program affect the final value of z?

while (i<k)

<-----

{
if (c<5) <-----
{

z=7; <-----
c=y+c;

<-----

}
i=i+1;

<-----

}

z=7 is control–dependent on (c<5)

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 20 / 51



Slicing Example

Which lines of this program affect the final value of z?

while (i<k)

<-----

{
if (c<5) <-----
{

z=7;

<-----

c=y+c; <-----
}
i=i+1;

<-----

}

Because it’s in a loop c<5 is data-dependent upon c=y+c;

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 20 / 51



Slicing Example

Which lines of this program affect the final value of z?

while (i<k) <-----
{

if (c<5) <-----
{

z=7;

<-----

c=y+c;

<-----

}
i=i+1;

<-----

}

The if is control–dependent on the guard of the while

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 20 / 51



Slicing Example

Which lines of this program affect the final value of z?

while (i<k) <-----
{

if (c<5)

<-----

{
z=7;

<-----

c=y+c;

<-----

}
i=i+1; <-----

}

The guard of the while is data-dependent on i=i+1

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 20 / 51



Slicing Example

Which lines of this program affect the final value of z?

while (i<k)

<-----

{
if (c<5)

<-----

{
z=7;

<-----

c=y+c;

<-----

}
i=i+1;

<-----

}

So slicing on z gives the whole program

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 20 / 51



Slicing Example

Which lines of this program affect the final value of z?

while (i<k)

<-----

{
if (c<5)

<-----

{
z=7;

<-----

c=y+c;

<-----

}
i=i+1;

<-----

}

So slicing on z gives the whole program In fact, slicing algorithms compute
the transitive closure of the dependence relation.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 20 / 51



Slicing Example

Which lines of this program affect the final value of z?

while (i<k)

<-----

{
if (c<5)

<-----

{
z=7;

<-----

c=y+c;

<-----

}
i=i+1;

<-----

}

So slicing on z gives the whole program In fact, slicing algorithms compute
the transitive closure of the dependence relation. But is this right?

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 20 / 51



Slicing Example

Which lines of this program affect the final value of z?

while (i<k)

<-----

{
if (c<5)

<-----

{
z=7;

<-----

c=y+c;

<-----

}
i=i+1;

<-----

}

So slicing on z gives the whole program In fact, slicing algorithms compute
the transitive closure of the dependence relation. But is this right? Can
you see a line that doesn’t really affect the final value of z?

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 20 / 51



Slicing Example

while (i<k)
{

if (c<5)
{

z=7;
c=y+c; <-----

}
i=i+1;

}

But is z really dependent on this line?

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 21 / 51



Slicing Example

while (i<k)
{

if (c<5)
{

z=7;
c=y+c; <-----

}
i=i+1;

}

Clearly not because if we do execute c=y+c the value of z can’t change
any further, so it is irrelevant if we go through the true part of the if after
that.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 21 / 51



Slicing Example

while (i<k)
{

if (c<5)
{

z=7;
c=y+c; <-----

}
i=i+1;

}

So transitive closure of dependence doesn’t seem to be the most accurate
way of computing dependencies.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 21 / 51



Slicing Example

while (i<k)
{

if (c<5)
{

z=7;

}
i=i+1;

}

This line should be removed from the slice.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 21 / 51



But...

“Who cares!” I hear you say.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 22 / 51



I do!

...millions of lines of code affecting y...
while (i<k)
{

if (c<5)
{

z=7;
c=y+c; <-----

}
i=i+1;

}

What if there were millions of lines of code above this fragment that
affected y? These would all, by transitivity, be unnecessarily included in
the slice.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 23 / 51



The Crux of the Problem

Dependence is not transitive.

The assumption that it is leads to many inaccuracies in dependency
computation.

So a statement that a slicing algorithm thinks may affect a variable
often does not.

This leads to slices that are too big.

Small is beautiful. – Big slices aren’t very useful.

We want to find ways of producing more accurate dependence
information and hence smaller slices.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 24 / 51



The Crux of the Problem

Dependence is not transitive.

The assumption that it is leads to many inaccuracies in dependency
computation.

So a statement that a slicing algorithm thinks may affect a variable
often does not.

This leads to slices that are too big.

Small is beautiful. – Big slices aren’t very useful.

We want to find ways of producing more accurate dependence
information and hence smaller slices.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 24 / 51



The Crux of the Problem

Dependence is not transitive.

The assumption that it is leads to many inaccuracies in dependency
computation.

So a statement that a slicing algorithm thinks may affect a variable
often does not.

This leads to slices that are too big.

Small is beautiful. – Big slices aren’t very useful.

We want to find ways of producing more accurate dependence
information and hence smaller slices.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 24 / 51



The Crux of the Problem

Dependence is not transitive.

The assumption that it is leads to many inaccuracies in dependency
computation.

So a statement that a slicing algorithm thinks may affect a variable
often does not.

This leads to slices that are too big.

Small is beautiful. – Big slices aren’t very useful.

We want to find ways of producing more accurate dependence
information and hence smaller slices.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 24 / 51



The Crux of the Problem

Dependence is not transitive.

The assumption that it is leads to many inaccuracies in dependency
computation.

So a statement that a slicing algorithm thinks may affect a variable
often does not.

This leads to slices that are too big.

Small is beautiful. – Big slices aren’t very useful.

We want to find ways of producing more accurate dependence
information and hence smaller slices.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 24 / 51



The Crux of the Problem

Dependence is not transitive.

The assumption that it is leads to many inaccuracies in dependency
computation.

So a statement that a slicing algorithm thinks may affect a variable
often does not.

This leads to slices that are too big.

Small is beautiful. – Big slices aren’t very useful.

We want to find ways of producing more accurate dependence
information and hence smaller slices.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 24 / 51



Conventional Slicing May Remove Non–termination

while (true)
{

}
z=2;

What do we get if we slice on the final value of z?

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 25 / 51



Conventional Slicing May Remove Non–termination

while (true)
{

}
z=2;

The loop is removed since z=2 is not data or control dependent on it.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 25 / 51



Conventional Slicing May Remove Non–termination

while (true)
{

}
z=2;

So transitive closure of dependence can introduce termination.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 25 / 51



Conventional Slicing May Remove Non–termination

while (true)
{

}
z=2;

So, formally a program p and its slice s need only agree in initial states
where p terminates.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 25 / 51



Conventional Slicing May Remove Non–termination

while (true)
{

}
z=2;

So, formally a program p and its slice s need only agree in initial states
where p terminates.
So, there’s an even smaller slice of this program.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 25 / 51



Conventional Slicing May Remove Non–termination

while (true)
{

}
z=2;

So, formally a program p and its slice s need only agree in initial states
where p terminates.
So, there’s an even smaller slice of this program.
The empty program – all statements can be removed.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 25 / 51



A more subtle example

What is the slice on j at the end of the program? (Remembering that a
program and its slice only need agree when the original terminates.)

while p(z)
{

if q(k) k=f(k);
else
{

k=g(k);

<-----

z=h(z);
}

}

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 26 / 51



A more subtle example

What is the slice on j at the end of the program? (Remembering that a
program and its slice only need agree when the original terminates.)

while p(z)
{

if q(k) k=f(k);
else
{

k=g(k);

<-----

z=h(z);
}

}

Again, transitive closure of dependence gives the whole program. But can
anyone see a line that can be removed?

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 26 / 51



A more subtle example

What is the slice on j at the end of the program? (Remembering that a
program and its slice only need agree when the original terminates.)

while p(z)
{

if q(k) k=f(k);
else
{

k=g(k); <-----
z=h(z);

}
}

What about this line?

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 26 / 51



A more subtle example

What is the slice on j at the end of the program? (Remembering that a
program and its slice only need agree when the original terminates.)

while p(z)
{

if q(k) k=f(k);
else
{

k=g(k); <-----
z=h(z);

}
}

It either causes the program to non–terminate or increases the number of
iterations of the loop before termination.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 26 / 51



A more subtle example

What is the slice on j at the end of the program? (Remembering that a
program and its slice only need agree when the original terminates.)

while p(z)
{

if q(k) k=f(k);
else
{

k=g(k); <-----
z=h(z);

}
}

In initial states where the program terminates this line doesn’t affect the
final value of z.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 26 / 51



A more subtle example

What is the slice on j at the end of the program? (Remembering that a
program and its slice only need agree when the original terminates.)

while p(z)
{

if q(k) k=f(k);
else
{

k=g(k); <-----
z=h(z);

}
}

So, by definition, k=g(k) can be removed from the slice.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 26 / 51



A more subtle example

Linear Schemas

while p(z)
{

if q(k) k=f(k);
else
{

k=g(k);

<-----

z=h(z);
}

}

The program above is in fact a Schema

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 26 / 51



A more subtle example

Linear Schemas

while p(z)
{

if q(k) k=f(k);
else
{

k=g(k);

<-----

z=h(z);
}

}

it is in fact a linear Schema because each function and predicate symbol
occurs at most once.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 26 / 51



A more subtle example

Linear Schemas

while p(z)
{

if q(k) k=f(k);
else
{

k=f(k);

<-----

z=h(z);
}

}

Now it’s not linear!

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 26 / 51



Schemas

Linear Schemas

while p(z)
{

if q(k) k=f(k);
else
{

k=g(k);
z=h(z);

}
}

A schema is a program where all expressions have been replaced by
symbolic expressions.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 27 / 51



Schemas

Linear Schemas

while p(z)
{

if q(k) k=f(k);
else
{

k=g(k);
z=h(z);

}
}

A schema represents a whole class of programs of similar structure.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 27 / 51



Schemas

Linear Schemas

while p(z)
{

if q(k) k=f(k);
else
{

k=g(k);
z=h(z);

}
}

For example the symbolic expression f(k), above, represents any expression
involving just the variable k and no other variables. e.g. k + 1 or 2k ∗ 5

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 27 / 51



A Schema and a programs in its Equivalence Class

Schema

while p(z)
{

if q(k)k=f(k);
else
{

k=g(k);
z=h(z);

}
}

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 28 / 51



A Schema and a programs in its Equivalence Class

Program

while(z<2)
{

if (k<0)k=k+1;
else
{

k=k-1;
z=z+1;

}
}

Notice, in this case the slice speeds up termination

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 29 / 51



A Schema and a programs in its Equivalence Class

Program

while(z<2)
{

if (k<0)k=k+1;
else
{

k=k-1;
z=z+1;

}
}

Notice, in this case the slice speeds up termination

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 29 / 51



A Schema and a programs in its Equivalence Class

Another Program

while(z<2)
{

if (k mod 2 == 0)k=k+2;
else
{

k=k+1;
z=z+1;

}
}

Notice, in this case the slice removes non-termination when k starts off
odd.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 30 / 51



A Schema and a programs in its Equivalence Class

Another Program

while(z<2)
{

if (k mod 2 == 0)k=k+2;
else
{

k=k+1;
z=z+1;

}
}

Notice, in this case the slice removes non-termination when k starts off
odd.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 30 / 51



Using Schemas theory to Compute Dependence

Importantly...

while p(z)
{

if q(k)k=f(k);
else
{

k=g(k); <--------
z=h(z);

}
}

using schema theory, we can prove that the final value of z is not
dependent on this line for all programs in its equivalence class.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 31 / 51



Using Schemas theory to Compute Dependence

Schema theory allows us to compute dependence more accurately.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 32 / 51



Program Dependence

It is well known that true program dependence is not computable.

In other words, we cannot decide in general whether line i of a
program depends upon line j .

This is equivalent to the halting problem.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 33 / 51



Program Dependence

It is well known that true program dependence is not computable.

In other words, we cannot decide in general whether line i of a
program depends upon line j .

This is equivalent to the halting problem.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 33 / 51



Program Dependence

It is well known that true program dependence is not computable.

In other words, we cannot decide in general whether line i of a
program depends upon line j .

This is equivalent to the halting problem.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 33 / 51



Main Question: Are Dataflow Minimal Slices Computable?

but current dependence algorithms work at the ‘linear schema’ level of
abstraction.

Can we compute minimal slices at the ‘linear schema’ level of
abstraction?

In other words, can we compute true dependence at this level of
abstraction?

We are now asking whether line i of a program depends upon line j .
for at least one program in its equivalence class.

These are problems in Schema Theory.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 34 / 51



Main Question: Are Dataflow Minimal Slices Computable?

but current dependence algorithms work at the ‘linear schema’ level of
abstraction.

Can we compute minimal slices at the ‘linear schema’ level of
abstraction?

In other words, can we compute true dependence at this level of
abstraction?

We are now asking whether line i of a program depends upon line j .
for at least one program in its equivalence class.

These are problems in Schema Theory.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 34 / 51



Main Question: Are Dataflow Minimal Slices Computable?

but current dependence algorithms work at the ‘linear schema’ level of
abstraction.

Can we compute minimal slices at the ‘linear schema’ level of
abstraction?

In other words, can we compute true dependence at this level of
abstraction?

We are now asking whether line i of a program depends upon line j .
for at least one program in its equivalence class.

These are problems in Schema Theory.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 34 / 51



Main Question: Are Dataflow Minimal Slices Computable?

but current dependence algorithms work at the ‘linear schema’ level of
abstraction.

Can we compute minimal slices at the ‘linear schema’ level of
abstraction?

In other words, can we compute true dependence at this level of
abstraction?

We are now asking whether line i of a program depends upon line j .
for at least one program in its equivalence class.

These are problems in Schema Theory.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 34 / 51



Main Question: Are Dataflow Minimal Slices Computable?

but current dependence algorithms work at the ‘linear schema’ level of
abstraction.

Can we compute minimal slices at the ‘linear schema’ level of
abstraction?

In other words, can we compute true dependence at this level of
abstraction?

We are now asking whether line i of a program depends upon line j .
for at least one program in its equivalence class.

These are problems in Schema Theory.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 34 / 51



History of Schema Theory

Schema theory was introduced in the 1950s by a Russian
Mathematician, Ianov. It was seen as a way of proving the correctness
of compiler optimisations.

Schemas are an abstract way of representing classes of programs with
identical structure.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 35 / 51



History of Schema Theory

Schema theory was introduced in the 1950s by a Russian
Mathematician, Ianov. It was seen as a way of proving the correctness
of compiler optimisations.

Schemas are an abstract way of representing classes of programs with
identical structure.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 35 / 51



Seminal Work on Program Schemas

Some well-known computer scientists have worked on Schemas:

Ianov (1960)“The Logical Schemes of Algorithms”

M.S. Paterson (1968) “Program Schemata”

D.C. Cooper(1969) “Program Scheme Equivalences and Logic”

R.Milner(1970) “Equivalences on Program Schemes”

Ershov (1971) “Theory of Program Schemata”

Constable and Gries(1972) “On Classes of Program Schemata”

Garland and Luckham(1973)“Program Schemes, Recursion Schemes
and Formal Language”

A.K.Chandra (1973) “On the Properties and Applications of Program
Schemas”

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 36 / 51



Seminal Work on Program Schemas

Some well-known computer scientists have worked on Schemas:

Ianov (1960)“The Logical Schemes of Algorithms”

M.S. Paterson (1968) “Program Schemata”

D.C. Cooper(1969) “Program Scheme Equivalences and Logic”

R.Milner(1970) “Equivalences on Program Schemes”

Ershov (1971) “Theory of Program Schemata”

Constable and Gries(1972) “On Classes of Program Schemata”

Garland and Luckham(1973)“Program Schemes, Recursion Schemes
and Formal Language”

A.K.Chandra (1973) “On the Properties and Applications of Program
Schemas”

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 36 / 51



The Semantics of Schemas

States = [Variables → Terms] ∪{⊥}
(Herbrand) Interpretations = [Terms → {True,False}]
M: Schemas → Interpretations → States → States.

while p(z)
{

if q(k) k=f(k);
else
{

k=g(k);
z=h(z);

}
}

John’s Howroyd’s Haskell Schema Interpreter readSch ”boat.sch”

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 37 / 51



The Semantics of Schemas

States = [Variables → Terms] ∪{⊥}

(Herbrand) Interpretations = [Terms → {True,False}]
M: Schemas → Interpretations → States → States.

while p(z)
{

if q(k) k=f(k);
else
{

k=g(k);
z=h(z);

}
}

John’s Howroyd’s Haskell Schema Interpreter readSch ”boat.sch”

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 37 / 51



The Semantics of Schemas

States = [Variables → Terms] ∪{⊥}
(Herbrand) Interpretations = [Terms → {True,False}]

M: Schemas → Interpretations → States → States.

while p(z)
{

if q(k) k=f(k);
else
{

k=g(k);
z=h(z);

}
}

John’s Howroyd’s Haskell Schema Interpreter readSch ”boat.sch”

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 37 / 51



The Semantics of Schemas

States = [Variables → Terms] ∪{⊥}
(Herbrand) Interpretations = [Terms → {True,False}]
M: Schemas → Interpretations → States → States.

while p(z)
{

if q(k) k=f(k);
else
{

k=g(k);
z=h(z);

}
}

John’s Howroyd’s Haskell Schema Interpreter readSch ”boat.sch”

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 37 / 51



The Semantics of Schemas

States = [Variables → Terms] ∪{⊥}
(Herbrand) Interpretations = [Terms → {True,False}]
M: Schemas → Interpretations → States → States.

while p(z)
{

if q(k) k=f(k);
else
{

k=g(k);
z=h(z);

}
}

John’s Howroyd’s Haskell Schema Interpreter readSch ”boat.sch”

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 37 / 51



The Semantics of Schemas

States = [Variables → Terms] ∪{⊥}
(Herbrand) Interpretations = [Terms → {True,False}]
M: Schemas → Interpretations → States → States.

while p(z)
{

if q(k) k=f(k);
else
{

k=g(k);
z=h(z);

}
}

John’s Howroyd’s Haskell Schema Interpreter readSch ”boat.sch”

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 37 / 51



Decidability of Equivalence of Schemas

Two Schemas are equivalent if the are semantically equivalent under
all (Herbrand) interpretations.

The Decidability of Equivalence of Schemas implies the
computability of minimal slices.

Why?

1 First add killing assignments to all the uninteresting variables at the
end of the program.

2 Then try all combinations of deleting statements (not the killing
assignments) and check for equivalence of the resulting schema with
the original.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 38 / 51



Decidability of Equivalence of Schemas

Two Schemas are equivalent if the are semantically equivalent under
all (Herbrand) interpretations.

The Decidability of Equivalence of Schemas implies the
computability of minimal slices.

Why?

1 First add killing assignments to all the uninteresting variables at the
end of the program.

2 Then try all combinations of deleting statements (not the killing
assignments) and check for equivalence of the resulting schema with
the original.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 38 / 51



Decidability of Equivalence of Schemas

Two Schemas are equivalent if the are semantically equivalent under
all (Herbrand) interpretations.

The Decidability of Equivalence of Schemas implies the
computability of minimal slices.

Why?

1 First add killing assignments to all the uninteresting variables at the
end of the program.

2 Then try all combinations of deleting statements (not the killing
assignments) and check for equivalence of the resulting schema with
the original.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 38 / 51



Decidability of Equivalence of Schemas

Two Schemas are equivalent if the are semantically equivalent under
all (Herbrand) interpretations.

The Decidability of Equivalence of Schemas implies the
computability of minimal slices.

Why?

1 First add killing assignments to all the uninteresting variables at the
end of the program.

2 Then try all combinations of deleting statements (not the killing
assignments) and check for equivalence of the resulting schema with
the original.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 38 / 51



Linear Schemas

We were surprised that no work had been done on Linear Schemas.

Serendipitously, it turned out that the linearity condition helped in
proving decidability of equivalence of schemas.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 39 / 51



Linear Schemas

We were surprised that no work had been done on Linear Schemas.

Serendipitously, it turned out that the linearity condition helped in
proving decidability of equivalence of schemas.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 39 / 51



Decidability of Equivalence of Schemas

Paterson (1967): Equivalence of General Schemas is Undecidable.

For Linear Schemas decidability of equivalence is an open problem.

S.Danicic et al: For certain classes of Linear Schemas equivalence is
decidable.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 40 / 51



Decidability of Equivalence of Schemas

Paterson (1967): Equivalence of General Schemas is Undecidable.

For Linear Schemas decidability of equivalence is an open problem.

S.Danicic et al: For certain classes of Linear Schemas equivalence is
decidable.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 40 / 51



Decidability of Equivalence of Schemas

Paterson (1967): Equivalence of General Schemas is Undecidable.

For Linear Schemas decidability of equivalence is an open problem.

S.Danicic et al: For certain classes of Linear Schemas equivalence is
decidable.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 40 / 51



Interesting Classes of Schema

A Free Schema is one in which for all paths through the schema, there is
an interpretation which follows that path.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 41 / 51



Free Schemas

Is this free?:

while p(j)
{

if q(k) k=f(k);
else
{

k=g(k);
j=h(j);

}
}

No - in a free schema, predicate terms never repeat.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 42 / 51



Free Schemas

Is this free?:

while p(j)
{

if q(k) k=f(k);
else
{

k=g(k);
j=h(j);

}
}

No - in a free schema, predicate terms never repeat.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 42 / 51



Free Schemas

Is this free?:

while p(j)
{

if q(k)
{

k=f(k);
j=m(j)

}
else
{

k=g(k);
j=h(j);

}
}

Yes

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 43 / 51



Free Schemas

Is this free?:

while p(j)
{

if q(k)
{

k=f(k);
j=m(j)

}
else
{

k=g(k);
j=h(j);

}
}

Yes
Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 43 / 51



Conservative Schemas

For every assignment x = E , the symbolic expression E mentions x .

while p(j)
{

if q(k)
{

k=f(k);
j=m(j)

}
else
{

k=g(k);
j=h(j);

}
}

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 44 / 51



Liberal Schemas

At every assignment the same term is never computed.

while p(j)
{

if q(k)
{

k=f(k);
j=m(j)

}
else
{

k=g(k);
j=h(j);

}
}

convervative implies liberal
Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 45 / 51



Recent Work

We proved that equivalence of conservative, free, linear schemas is
decidable.
Michael R. Laurence, Sebastian Danicic, Mark Harman, Rob Hierons, and John Howroyd.
Equivalence of conservative, free, linear program schemas is decidable.
Theoretical Computer Science, 290:831–862, January 2003.

. . . and strengthened this by proving that equivalence of liberal, free
linear schemas is decidable in polynomial time.

Sebastian Danicic, Mark Harman, Robert Mark Hierons, John Howroyd, and Mike Laurence.
Equivalence of linear, free, liberal, structured program schemas is decidable in polynomial time.
Theoretical Computer Science, 2006.

Equivalence of Predicate Linear, free, liberal,schemas is decidable
The Journal of Logic and Algebraic Programming, 2007.

. . . and also found conditions when standard slicing algorithms give
minimal slices.

Sebastian Danicic, Chris Fox, Mark Harman, Robert Mark Hierons, John Howroyd, and Mike Laurence.
Slicing algorithms are minimal for programs which can be expressed as linear, free, liberal schemas.
The Computer Journal, 48(6):737–748, 2005.

This represented significant progress in the field of schema theory
after a hiatus of about twenty years.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 46 / 51



Recent Work

We proved that equivalence of conservative, free, linear schemas is
decidable.
Michael R. Laurence, Sebastian Danicic, Mark Harman, Rob Hierons, and John Howroyd.
Equivalence of conservative, free, linear program schemas is decidable.
Theoretical Computer Science, 290:831–862, January 2003.

. . . and strengthened this by proving that equivalence of liberal, free
linear schemas is decidable in polynomial time.
Sebastian Danicic, Mark Harman, Robert Mark Hierons, John Howroyd, and Mike Laurence.
Equivalence of linear, free, liberal, structured program schemas is decidable in polynomial time.
Theoretical Computer Science, 2006.

Equivalence of Predicate Linear, free, liberal,schemas is decidable
The Journal of Logic and Algebraic Programming, 2007.

. . . and also found conditions when standard slicing algorithms give
minimal slices.

Sebastian Danicic, Chris Fox, Mark Harman, Robert Mark Hierons, John Howroyd, and Mike Laurence.
Slicing algorithms are minimal for programs which can be expressed as linear, free, liberal schemas.
The Computer Journal, 48(6):737–748, 2005.

This represented significant progress in the field of schema theory
after a hiatus of about twenty years.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 46 / 51



Recent Work

We proved that equivalence of conservative, free, linear schemas is
decidable.
Michael R. Laurence, Sebastian Danicic, Mark Harman, Rob Hierons, and John Howroyd.
Equivalence of conservative, free, linear program schemas is decidable.
Theoretical Computer Science, 290:831–862, January 2003.

. . . and strengthened this by proving that equivalence of liberal, free
linear schemas is decidable in polynomial time.
Sebastian Danicic, Mark Harman, Robert Mark Hierons, John Howroyd, and Mike Laurence.
Equivalence of linear, free, liberal, structured program schemas is decidable in polynomial time.
Theoretical Computer Science, 2006.

Equivalence of Predicate Linear, free, liberal,schemas is decidable
The Journal of Logic and Algebraic Programming, 2007.

. . . and also found conditions when standard slicing algorithms give
minimal slices.
Sebastian Danicic, Chris Fox, Mark Harman, Robert Mark Hierons, John Howroyd, and Mike Laurence.
Slicing algorithms are minimal for programs which can be expressed as linear, free, liberal schemas.
The Computer Journal, 48(6):737–748, 2005.

This represented significant progress in the field of schema theory
after a hiatus of about twenty years.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 46 / 51



Recent Work

We proved that equivalence of conservative, free, linear schemas is
decidable.
Michael R. Laurence, Sebastian Danicic, Mark Harman, Rob Hierons, and John Howroyd.
Equivalence of conservative, free, linear program schemas is decidable.
Theoretical Computer Science, 290:831–862, January 2003.

. . . and strengthened this by proving that equivalence of liberal, free
linear schemas is decidable in polynomial time.
Sebastian Danicic, Mark Harman, Robert Mark Hierons, John Howroyd, and Mike Laurence.
Equivalence of linear, free, liberal, structured program schemas is decidable in polynomial time.
Theoretical Computer Science, 2006.

Equivalence of Predicate Linear, free, liberal,schemas is decidable
The Journal of Logic and Algebraic Programming, 2007.

. . . and also found conditions when standard slicing algorithms give
minimal slices.
Sebastian Danicic, Chris Fox, Mark Harman, Robert Mark Hierons, John Howroyd, and Mike Laurence.
Slicing algorithms are minimal for programs which can be expressed as linear, free, liberal schemas.
The Computer Journal, 48(6):737–748, 2005.

This represented significant progress in the field of schema theory
after a hiatus of about twenty years.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 46 / 51



But we still don’t know whether dataflow minimal slices are computable!

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 47 / 51



Open Problems in Decidability to Investigate

Is equivalence of free conservative linear schemas decidable?

Yes

Is equivalence of free liberal linear schemas decidable?

Yes

Is equivalence of free linear schemas decidable?

Don’t know

Is equivalence of linear schemas decidable?

Don’t know

Is freeness of linear schemas decidable?

Don’t know

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 48 / 51



Open Problems in Decidability to Investigate

Is equivalence of free conservative linear schemas decidable? Yes

Is equivalence of free liberal linear schemas decidable?

Yes

Is equivalence of free linear schemas decidable?

Don’t know

Is equivalence of linear schemas decidable?

Don’t know

Is freeness of linear schemas decidable?

Don’t know

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 48 / 51



Open Problems in Decidability to Investigate

Is equivalence of free conservative linear schemas decidable? Yes

Is equivalence of free liberal linear schemas decidable?

Yes

Is equivalence of free linear schemas decidable?

Don’t know

Is equivalence of linear schemas decidable?

Don’t know

Is freeness of linear schemas decidable?

Don’t know

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 48 / 51



Open Problems in Decidability to Investigate

Is equivalence of free conservative linear schemas decidable? Yes

Is equivalence of free liberal linear schemas decidable? Yes

Is equivalence of free linear schemas decidable?

Don’t know

Is equivalence of linear schemas decidable?

Don’t know

Is freeness of linear schemas decidable?

Don’t know

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 48 / 51



Open Problems in Decidability to Investigate

Is equivalence of free conservative linear schemas decidable? Yes

Is equivalence of free liberal linear schemas decidable? Yes

Is equivalence of free linear schemas decidable?

Don’t know

Is equivalence of linear schemas decidable?

Don’t know

Is freeness of linear schemas decidable?

Don’t know

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 48 / 51



Open Problems in Decidability to Investigate

Is equivalence of free conservative linear schemas decidable? Yes

Is equivalence of free liberal linear schemas decidable? Yes

Is equivalence of free linear schemas decidable? Don’t know

Is equivalence of linear schemas decidable?

Don’t know

Is freeness of linear schemas decidable?

Don’t know

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 48 / 51



Open Problems in Decidability to Investigate

Is equivalence of free conservative linear schemas decidable? Yes

Is equivalence of free liberal linear schemas decidable? Yes

Is equivalence of free linear schemas decidable? Don’t know

Is equivalence of linear schemas decidable?

Don’t know

Is freeness of linear schemas decidable?

Don’t know

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 48 / 51



Open Problems in Decidability to Investigate

Is equivalence of free conservative linear schemas decidable? Yes

Is equivalence of free liberal linear schemas decidable? Yes

Is equivalence of free linear schemas decidable? Don’t know

Is equivalence of linear schemas decidable? Don’t know

Is freeness of linear schemas decidable?

Don’t know

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 48 / 51



Open Problems in Decidability to Investigate

Is equivalence of free conservative linear schemas decidable? Yes

Is equivalence of free liberal linear schemas decidable? Yes

Is equivalence of free linear schemas decidable? Don’t know

Is equivalence of linear schemas decidable? Don’t know

Is freeness of linear schemas decidable?

Don’t know

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 48 / 51



Open Problems in Decidability to Investigate

Is equivalence of free conservative linear schemas decidable? Yes

Is equivalence of free liberal linear schemas decidable? Yes

Is equivalence of free linear schemas decidable? Don’t know

Is equivalence of linear schemas decidable? Don’t know

Is freeness of linear schemas decidable? Don’t know

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 48 / 51



Aims of the Schemas Project

There is strong evidence that the imposition of this extra but natural
condition of linearity will lead to further decidability results in the
theory of schemas.

We hope that our new results will lead to a re-appraisal of the
substantial body of work in program schema theory and to further
research on its applications in a modern framework.

More accurate
algorithms for computing dependence.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 49 / 51



Aims of the Schemas Project

There is strong evidence that the imposition of this extra but natural
condition of linearity will lead to further decidability results in the
theory of schemas.

We hope that our new results will lead to a re-appraisal of the
substantial body of work in program schema theory and to further
research on its applications in a modern framework.

More accurate
algorithms for computing dependence.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 49 / 51



Aims of the Schemas Project

There is strong evidence that the imposition of this extra but natural
condition of linearity will lead to further decidability results in the
theory of schemas.

We hope that our new results will lead to a re-appraisal of the
substantial body of work in program schema theory and to further
research on its applications in a modern framework. More accurate
algorithms for computing dependence.

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 49 / 51



Thanks for listening!
Any Questions?

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 50 / 51



Schema Events

Third Schema Meeting 30 March

http://sebastian.doc.gold.ac.uk/PTA/schemas/

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 51 / 51

http://www.dcs.kcl.ac.uk/staff/zheng/astrenet/html/astrenet14.html
http://sebastian.doc.gold.ac.uk/PTA/schemas/


Schema Events

Third Schema Meeting 30 March

http://sebastian.doc.gold.ac.uk/PTA/schemas/

Sebastian Danicic () Linear Schemas for Program DependenceASTReNet Workshop 13BCSMarch 21, 2007 51 / 51

http://www.dcs.kcl.ac.uk/staff/zheng/astrenet/html/astrenet14.html
http://sebastian.doc.gold.ac.uk/PTA/schemas/

	Introduction
	People
	People

	Motivation 
	Examples
	History of Schema Theory
	Aims of the Schemas Project

