
Linear Schemas for Program Dependence

Sebastian Danicic

November 21, 2006

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 1 / 52

First Schema Meeting 21 Nov 2006

Vague Agenda:
10-10.30: Coffee etc.
10.30-11.15: Sebastian Danicic: Intro to Schemas Project
11.15-12.00: Mike Laurence: A History of Schemas: Results and

Open Problems
12.00-1.15: Lunch (probably in College)
1.15-1.30: “Is that the Post Office Tower?”

(Traditional Circuit of Goldsmiths)

1.30-4: Future Work - Discussion
4-6: Drinking in the Hobgoblin Pub
6- Eating in The Thailand, 15 Lewisham Way

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 2 / 52

Linear Schemas for Program Dependence EP/E002919/1

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 3 / 52

Linear Schemas for Program Dependence EP/E002919/1

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 3 / 52

Linear Schemas for Program Dependence EP/E002919/1

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 3 / 52

Linear Schemas for Program Dependence EP/E002919/1

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 3 / 52

Linear Schemas for Program Dependence EP/E002919/1

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 3 / 52

Linear Schemas for Program Dependence EP/E002919/1

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 3 / 52

Linear Schemas for Program Dependence EP/E002919/1

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 3 / 52

This Talk

History of the Schemas Project

Aims of the Schemas Project
People in the Schemas Project
Motivation - Examples from Program Slicing
Semantics of Schemas and Dataflow Minimality
Decidability of Equivalence of Schemas
Future Work

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 4 / 52

This Talk

History of the Schemas Project
Aims of the Schemas Project

People in the Schemas Project
Motivation - Examples from Program Slicing
Semantics of Schemas and Dataflow Minimality
Decidability of Equivalence of Schemas
Future Work

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 4 / 52

This Talk

History of the Schemas Project
Aims of the Schemas Project
People in the Schemas Project

Motivation - Examples from Program Slicing
Semantics of Schemas and Dataflow Minimality
Decidability of Equivalence of Schemas
Future Work

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 4 / 52

This Talk

History of the Schemas Project
Aims of the Schemas Project
People in the Schemas Project
Motivation - Examples from Program Slicing

Semantics of Schemas and Dataflow Minimality
Decidability of Equivalence of Schemas
Future Work

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 4 / 52

This Talk

History of the Schemas Project
Aims of the Schemas Project
People in the Schemas Project
Motivation - Examples from Program Slicing
Semantics of Schemas and Dataflow Minimality

Decidability of Equivalence of Schemas
Future Work

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 4 / 52

This Talk

History of the Schemas Project
Aims of the Schemas Project
People in the Schemas Project
Motivation - Examples from Program Slicing
Semantics of Schemas and Dataflow Minimality
Decidability of Equivalence of Schemas

Future Work

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 4 / 52

This Talk

History of the Schemas Project
Aims of the Schemas Project
People in the Schemas Project
Motivation - Examples from Program Slicing
Semantics of Schemas and Dataflow Minimality
Decidability of Equivalence of Schemas
Future Work

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 4 / 52

History of Schema Theory

Schema theory was introduced in the 1950s by a Russian
Mathematician, Ianov. It was seen as a way of proving the correctness
of compiler optimisations.

Schemas are an abstract way of representing classes of programs with
identical structure.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 5 / 52

History of Schema Theory

Schema theory was introduced in the 1950s by a Russian
Mathematician, Ianov. It was seen as a way of proving the correctness
of compiler optimisations.

Schemas are an abstract way of representing classes of programs with
identical structure.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 5 / 52

Seminal Work on Program Schemas

Some well-known computer scientists have worked on Schemas:

Ianov (1960)“The Logical Schemes of Algorithms”

M.S. Paterson (1968) “Program Schemata”

D.C. Cooper(1969) “Program Scheme Equivalences and Logic”

R.Milner(1970) “Equivalences on Program Schemes”

Ershov (1971) “Theory of Program Schemata”

Constable and Gries(1972) “On Classes of Program Schemata”

Garland and Luckham(1973)“Program Schemes, Recursion Schemes
and Formal Language”

A.K.Chandra (1973) “On the Properties and Applications of Program
Schemas”

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 6 / 52

Seminal Work on Program Schemas

Some well-known computer scientists have worked on Schemas:

Ianov (1960)“The Logical Schemes of Algorithms”

M.S. Paterson (1968) “Program Schemata”

D.C. Cooper(1969) “Program Scheme Equivalences and Logic”

R.Milner(1970) “Equivalences on Program Schemes”

Ershov (1971) “Theory of Program Schemata”

Constable and Gries(1972) “On Classes of Program Schemata”

Garland and Luckham(1973)“Program Schemes, Recursion Schemes
and Formal Language”

A.K.Chandra (1973) “On the Properties and Applications of Program
Schemas”

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 6 / 52

Death of Schemas

The subject more or less died out by the 1980s due to a lack of positive
results.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 7 / 52

History

In the 1990s, Mark and I were working on the computability of
Dataflow Minimal Slices.

Mark was at a conference and mentioned our problem to Tom Reps of
Wisconsin and Tim Teitelbaum of Cornell who suggested we looked at

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 8 / 52

History

In the 1990s, Mark and I were working on the computability of
Dataflow Minimal Slices.

Mark was at a conference and mentioned our problem to Tom Reps of
Wisconsin and Tim Teitelbaum of Cornell who suggested we looked at

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 8 / 52

History

In the 1990s, Mark and I were working on the computability of
Dataflow Minimal Slices.

Mark was at a conference and mentioned our problem to Tom Reps of
Wisconsin and Tim Teitelbaum of Cornell who suggested we looked at
Schema Theory.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 8 / 52

They were right!

For our problem it turned out we needed a class of schema in which
no predicate or function symbol occurs more than once.

We called these Linear Schemas.

We were surprised that no work had been done on Linear Schemas.

Serendipitously, it turned out that the linearity condition helped in
proving decidability of equivalence of schemas.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 9 / 52

They were right!

For our problem it turned out we needed a class of schema in which
no predicate or function symbol occurs more than once.

We called these Linear Schemas.

We were surprised that no work had been done on Linear Schemas.

Serendipitously, it turned out that the linearity condition helped in
proving decidability of equivalence of schemas.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 9 / 52

They were right!

For our problem it turned out we needed a class of schema in which
no predicate or function symbol occurs more than once.

We called these Linear Schemas.

We were surprised that no work had been done on Linear Schemas.

Serendipitously, it turned out that the linearity condition helped in
proving decidability of equivalence of schemas.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 9 / 52

They were right!

For our problem it turned out we needed a class of schema in which
no predicate or function symbol occurs more than once.

We called these Linear Schemas.

We were surprised that no work had been done on Linear Schemas.

Serendipitously, it turned out that the linearity condition helped in
proving decidability of equivalence of schemas.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 9 / 52

They were right!

For our problem it turned out we needed a class of schema in which
no predicate or function symbol occurs more than once.

We called these Linear Schemas.

We were surprised that no work had been done on Linear Schemas.

Serendipitously, it turned out that the linearity condition helped in
proving decidability of equivalence of schemas.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 9 / 52

Mike’s Work

Mike proved that equivalence of conservative, free, linear schemas is
decidable.

and in his thesis he strengthened this by proving that equivalence of
liberal, free linear schemas is decidable in polynomial time.

This represented significant progress in the field of schema theory
after a hiatus of about twenty years.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 10 / 52

Mike’s Work

Mike proved that equivalence of conservative, free, linear schemas is
decidable.

and in his thesis he strengthened this by proving that equivalence of
liberal, free linear schemas is decidable in polynomial time.

This represented significant progress in the field of schema theory
after a hiatus of about twenty years.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 10 / 52

Mike’s Work

Mike proved that equivalence of conservative, free, linear schemas is
decidable.

and in his thesis he strengthened this by proving that equivalence of
liberal, free linear schemas is decidable in polynomial time.

This represented significant progress in the field of schema theory
after a hiatus of about twenty years.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 10 / 52

But we still don’t know whether dataflow minimal slices are computable!

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 11 / 52

Aims of the Schemas Project

There is strong evidence that the imposition of this extra but natural
condition of linearity (or partial forms of linearity) will lead to further
decidability results in the theory of schemas.

We hope that our new results will lead to a re-appraisal of the
substantial body of work in program schema theory and to further
research on its applications in a modern framework.

e.g. Dataflow Minimal Slicing!

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 12 / 52

Aims of the Schemas Project

There is strong evidence that the imposition of this extra but natural
condition of linearity (or partial forms of linearity) will lead to further
decidability results in the theory of schemas.

We hope that our new results will lead to a re-appraisal of the
substantial body of work in program schema theory and to further
research on its applications in a modern framework.

e.g. Dataflow Minimal Slicing!

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 12 / 52

Aims of the Schemas Project

There is strong evidence that the imposition of this extra but natural
condition of linearity (or partial forms of linearity) will lead to further
decidability results in the theory of schemas.

We hope that our new results will lead to a re-appraisal of the
substantial body of work in program schema theory and to further
research on its applications in a modern framework.
e.g. Dataflow Minimal Slicing!

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 12 / 52

People

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 13 / 52

Dr. Sebastian Danicic (Principal Investigator)

Sebastian is a Lecturer in Computing at Goldsmiths.

His work on slicing began in the mid 1990s with work on its semantic
foundations and algorithms.

The Schemas project described here has grown out of the research
Sebastian conducted during his PhD. Since then, he has supervised
two PhDs continuing this work.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 14 / 52

Dr. Sebastian Danicic (Principal Investigator)

Sebastian is a Lecturer in Computing at Goldsmiths.

His work on slicing began in the mid 1990s with work on its semantic
foundations and algorithms.

The Schemas project described here has grown out of the research
Sebastian conducted during his PhD. Since then, he has supervised
two PhDs continuing this work.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 14 / 52

Dr. Sebastian Danicic (Principal Investigator)

Sebastian is a Lecturer in Computing at Goldsmiths.

His work on slicing began in the mid 1990s with work on its semantic
foundations and algorithms.

The Schemas project described here has grown out of the research
Sebastian conducted during his PhD. Since then, he has supervised
two PhDs continuing this work.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 14 / 52

Dr. Sebastian Danicic (Principal Investigator)

Sebastian is a Lecturer in Computing at Goldsmiths.

His work on slicing began in the mid 1990s with work on its semantic
foundations and algorithms.

The Schemas project described here has grown out of the research
Sebastian conducted during his PhD. Since then, he has supervised
two PhDs continuing this work.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 14 / 52

Prof. Mark Harman(Co–Investigator)

Mark is Professor of Software Engineering at King’s College London.

He is the principal investigator on a number of projects including one
to design and build an industrial program slicing and variable
dependence analysis system.

He is the inventor of Amorphous Slicing

He has also worked on problems in software testing and upon the
combination of slicing, transformation and testing.

Mark is also well–known for his work on Search-Based Software
Engineering for which he has recently obtained a £1,145,357 EPSRC
grant.

Mark used to work at Goldsmiths

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 15 / 52

Prof. Mark Harman(Co–Investigator)

Mark is Professor of Software Engineering at King’s College London.

He is the principal investigator on a number of projects including one
to design and build an industrial program slicing and variable
dependence analysis system.

He is the inventor of Amorphous Slicing

He has also worked on problems in software testing and upon the
combination of slicing, transformation and testing.

Mark is also well–known for his work on Search-Based Software
Engineering for which he has recently obtained a £1,145,357 EPSRC
grant.

Mark used to work at Goldsmiths

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 15 / 52

Prof. Mark Harman(Co–Investigator)

Mark is Professor of Software Engineering at King’s College London.

He is the principal investigator on a number of projects including one
to design and build an industrial program slicing and variable
dependence analysis system.

He is the inventor of Amorphous Slicing

He has also worked on problems in software testing and upon the
combination of slicing, transformation and testing.

Mark is also well–known for his work on Search-Based Software
Engineering for which he has recently obtained a £1,145,357 EPSRC
grant.

Mark used to work at Goldsmiths

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 15 / 52

Prof. Mark Harman(Co–Investigator)

Mark is Professor of Software Engineering at King’s College London.

He is the principal investigator on a number of projects including one
to design and build an industrial program slicing and variable
dependence analysis system.

He is the inventor of Amorphous Slicing

He has also worked on problems in software testing and upon the
combination of slicing, transformation and testing.

Mark is also well–known for his work on Search-Based Software
Engineering for which he has recently obtained a £1,145,357 EPSRC
grant.

Mark used to work at Goldsmiths

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 15 / 52

Prof. Mark Harman(Co–Investigator)

Mark is Professor of Software Engineering at King’s College London.

He is the principal investigator on a number of projects including one
to design and build an industrial program slicing and variable
dependence analysis system.

He is the inventor of Amorphous Slicing

He has also worked on problems in software testing and upon the
combination of slicing, transformation and testing.

Mark is also well–known for his work on Search-Based Software
Engineering for which he has recently obtained a £1,145,357 EPSRC
grant.

Mark used to work at Goldsmiths

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 15 / 52

Prof. Mark Harman(Co–Investigator)

Mark is Professor of Software Engineering at King’s College London.

He is the principal investigator on a number of projects including one
to design and build an industrial program slicing and variable
dependence analysis system.

He is the inventor of Amorphous Slicing

He has also worked on problems in software testing and upon the
combination of slicing, transformation and testing.

Mark is also well–known for his work on Search-Based Software
Engineering for which he has recently obtained a £1,145,357 EPSRC
grant.

Mark used to work at Goldsmiths

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 15 / 52

Prof. Mark Harman(Co–Investigator)

Mark is Professor of Software Engineering at King’s College London.

He is the principal investigator on a number of projects including one
to design and build an industrial program slicing and variable
dependence analysis system.

He is the inventor of Amorphous Slicing

He has also worked on problems in software testing and upon the
combination of slicing, transformation and testing.

Mark is also well–known for his work on Search-Based Software
Engineering for which he has recently obtained a £1,145,357 EPSRC
grant.

Mark used to work at Goldsmiths

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 15 / 52

Prof. Rob Hierons (Co-Investigator)

Rob is Professor of Computer Science at Brunel University.

Rob has a BA in Mathematics (Trinity College, Cambridge), and a
Ph.D. in Computer Science (Brunel University)

Rob has published widely in the areas of testing and software
engineering.

Rob used to work at Goldsmiths

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 16 / 52

Prof. Rob Hierons (Co-Investigator)

Rob is Professor of Computer Science at Brunel University.

Rob has a BA in Mathematics (Trinity College, Cambridge), and a
Ph.D. in Computer Science (Brunel University)

Rob has published widely in the areas of testing and software
engineering.

Rob used to work at Goldsmiths

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 16 / 52

Prof. Rob Hierons (Co-Investigator)

Rob is Professor of Computer Science at Brunel University.

Rob has a BA in Mathematics (Trinity College, Cambridge), and a
Ph.D. in Computer Science (Brunel University)

Rob has published widely in the areas of testing and software
engineering.

Rob used to work at Goldsmiths

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 16 / 52

Prof. Rob Hierons (Co-Investigator)

Rob is Professor of Computer Science at Brunel University.

Rob has a BA in Mathematics (Trinity College, Cambridge), and a
Ph.D. in Computer Science (Brunel University)

Rob has published widely in the areas of testing and software
engineering.

Rob used to work at Goldsmiths

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 16 / 52

Prof. Rob Hierons (Co-Investigator)

Rob is Professor of Computer Science at Brunel University.

Rob has a BA in Mathematics (Trinity College, Cambridge), and a
Ph.D. in Computer Science (Brunel University)

Rob has published widely in the areas of testing and software
engineering.

Rob used to work at Goldsmiths

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 16 / 52

Dr. Chris Fox

Chris is Reader in Computer Science at Essex University.

He has published widely in the areas of Formal Semantics, Philosophy
of Language, Business Process Modelling and Program Analysis.

Chris implemented the first conditioned slicer, ConSiT: a system
which combines symbolic program execution with theorem proving.

Chris used to work at Goldsmiths

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 17 / 52

Dr. Chris Fox

Chris is Reader in Computer Science at Essex University.

He has published widely in the areas of Formal Semantics, Philosophy
of Language, Business Process Modelling and Program Analysis.

Chris implemented the first conditioned slicer, ConSiT: a system
which combines symbolic program execution with theorem proving.

Chris used to work at Goldsmiths

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 17 / 52

Dr. Chris Fox

Chris is Reader in Computer Science at Essex University.

He has published widely in the areas of Formal Semantics, Philosophy
of Language, Business Process Modelling and Program Analysis.

Chris implemented the first conditioned slicer, ConSiT: a system
which combines symbolic program execution with theorem proving.

Chris used to work at Goldsmiths

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 17 / 52

Dr. Chris Fox

Chris is Reader in Computer Science at Essex University.

He has published widely in the areas of Formal Semantics, Philosophy
of Language, Business Process Modelling and Program Analysis.

Chris implemented the first conditioned slicer, ConSiT: a system
which combines symbolic program execution with theorem proving.

Chris used to work at Goldsmiths

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 17 / 52

Dr. Chris Fox

Chris is Reader in Computer Science at Essex University.

He has published widely in the areas of Formal Semantics, Philosophy
of Language, Business Process Modelling and Program Analysis.

Chris implemented the first conditioned slicer, ConSiT: a system
which combines symbolic program execution with theorem proving.

Chris used to work at Goldsmiths

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 17 / 52

Dr. Lahcen Ouarbya

Lahcen is a lecturer at Goldsmiths College.

He has a BSc in Physics from Cadi Ayad Univesity, Marrakech,
Morocco

...an MSc in Solid State Physics from St. Petersburg State University

and a PhD in Formal Semantics of Slicing from Goldsmiths,
(supervised by Sebastian, Mark, Rob, Chris and John).

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 18 / 52

Dr. Lahcen Ouarbya

Lahcen is a lecturer at Goldsmiths College.

He has a BSc in Physics from Cadi Ayad Univesity, Marrakech,
Morocco

...an MSc in Solid State Physics from St. Petersburg State University

and a PhD in Formal Semantics of Slicing from Goldsmiths,
(supervised by Sebastian, Mark, Rob, Chris and John).

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 18 / 52

Dr. Lahcen Ouarbya

Lahcen is a lecturer at Goldsmiths College.

He has a BSc in Physics from Cadi Ayad Univesity, Marrakech,
Morocco

...an MSc in Solid State Physics from St. Petersburg State University

and a PhD in Formal Semantics of Slicing from Goldsmiths,
(supervised by Sebastian, Mark, Rob, Chris and John).

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 18 / 52

Dr. Lahcen Ouarbya

Lahcen is a lecturer at Goldsmiths College.

He has a BSc in Physics from Cadi Ayad Univesity, Marrakech,
Morocco

...an MSc in Solid State Physics from St. Petersburg State University

and a PhD in Formal Semantics of Slicing from Goldsmiths,
(supervised by Sebastian, Mark, Rob, Chris and John).

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 18 / 52

Dr. Mohammed (Dave) Daoudi

Dave is now studying Financial Mathematics at Imperial College.

Dave has a first class honours degree in Mathematics from Goldsmiths

and a PhD in Conditioned Slicing from Goldsmiths, (supervised by
Sebastian, Mark, Rob, Chris and John).

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 19 / 52

Dr. Mohammed (Dave) Daoudi

Dave is now studying Financial Mathematics at Imperial College.

Dave has a first class honours degree in Mathematics from Goldsmiths

and a PhD in Conditioned Slicing from Goldsmiths, (supervised by
Sebastian, Mark, Rob, Chris and John).

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 19 / 52

Dr. Mohammed (Dave) Daoudi

Dave is now studying Financial Mathematics at Imperial College.

Dave has a first class honours degree in Mathematics from Goldsmiths

and a PhD in Conditioned Slicing from Goldsmiths, (supervised by
Sebastian, Mark, Rob, Chris and John).

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 19 / 52

Dr. Dr. Mike Laurence (Research Assistant)

Mike has BSc in Mathematics from Queen Mary College, University
of London (1st class honours) an has an MSc in Mathematics from
University of Warwick

A PhD in Group Theory from Queen Mary College

A PhD in Schema Theory from Goldsmiths, (supervised by Sebastian,
Rob, Mark and John).

He has had a number of previous jobs notably as a clothes sorter at
an Oxfam shop near Goodge Street.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 20 / 52

Dr. Dr. Mike Laurence (Research Assistant)

Mike has BSc in Mathematics from Queen Mary College, University
of London (1st class honours) an has an MSc in Mathematics from
University of Warwick

A PhD in Group Theory from Queen Mary College

A PhD in Schema Theory from Goldsmiths, (supervised by Sebastian,
Rob, Mark and John).

He has had a number of previous jobs notably as a clothes sorter at
an Oxfam shop near Goodge Street.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 20 / 52

Dr. Dr. Mike Laurence (Research Assistant)

Mike has BSc in Mathematics from Queen Mary College, University
of London (1st class honours) an has an MSc in Mathematics from
University of Warwick

A PhD in Group Theory from Queen Mary College

A PhD in Schema Theory from Goldsmiths, (supervised by Sebastian,
Rob, Mark and John).

He has had a number of previous jobs notably as a clothes sorter at
an Oxfam shop near Goodge Street.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 20 / 52

Dr. Dr. Mike Laurence (Research Assistant)

Mike has BSc in Mathematics from Queen Mary College, University
of London (1st class honours) an has an MSc in Mathematics from
University of Warwick

A PhD in Group Theory from Queen Mary College

A PhD in Schema Theory from Goldsmiths, (supervised by Sebastian,
Rob, Mark and John).

He has had a number of previous jobs notably as a clothes sorter at
an Oxfam shop near Goodge Street.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 20 / 52

Dr. Dr. Mike Laurence (Research Assistant)

His favourite food is:

Pistachio Nuts!

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 21 / 52

Dr. Dr. Mike Laurence (Research Assistant)

His favourite food is:

Pistachio Nuts!

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 21 / 52

Dr. John Howroyd (Industrial Collaborator)

John works as Director of Research and Development at @UK PLC.

He has a BSc in Mathematics from Oxford University and a PhD in
Mathematics from St. Andrews.

His interests include Geometric Measure Theory, Harmonic Analysis,
Isometries, Applications of Domain Theory in Computable
Mathematics, and Static Program Analysis.

John used to work at Goldsmiths

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 22 / 52

Dr. John Howroyd (Industrial Collaborator)

John works as Director of Research and Development at @UK PLC.

He has a BSc in Mathematics from Oxford University and a PhD in
Mathematics from St. Andrews.

His interests include Geometric Measure Theory, Harmonic Analysis,
Isometries, Applications of Domain Theory in Computable
Mathematics, and Static Program Analysis.

John used to work at Goldsmiths

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 22 / 52

Dr. John Howroyd (Industrial Collaborator)

John works as Director of Research and Development at @UK PLC.

He has a BSc in Mathematics from Oxford University and a PhD in
Mathematics from St. Andrews.

His interests include Geometric Measure Theory, Harmonic Analysis,
Isometries, Applications of Domain Theory in Computable
Mathematics, and Static Program Analysis.

John used to work at Goldsmiths

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 22 / 52

Dr. John Howroyd (Industrial Collaborator)

John works as Director of Research and Development at @UK PLC.

He has a BSc in Mathematics from Oxford University and a PhD in
Mathematics from St. Andrews.

His interests include Geometric Measure Theory, Harmonic Analysis,
Isometries, Applications of Domain Theory in Computable
Mathematics, and Static Program Analysis.

John used to work at Goldsmiths

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 22 / 52

Prof. Elaine Weyuker (Industrial Collaborator)

Elaine works at AT&T Labs-Research.

She has published widely in the area of schema theory and dataflow
analysis.

She is the originator of dataflow testing.

She is world renowned for her research into providing formal bases for
many areas of computer science.

Elaine isn’t here :(

and ...

Elaine has no connection with Goldsmiths

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 23 / 52

Prof. Elaine Weyuker (Industrial Collaborator)

Elaine works at AT&T Labs-Research.

She has published widely in the area of schema theory and dataflow
analysis.

She is the originator of dataflow testing.

She is world renowned for her research into providing formal bases for
many areas of computer science.

Elaine isn’t here :(

and ...

Elaine has no connection with Goldsmiths

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 23 / 52

Prof. Elaine Weyuker (Industrial Collaborator)

Elaine works at AT&T Labs-Research.

She has published widely in the area of schema theory and dataflow
analysis.

She is the originator of dataflow testing.

She is world renowned for her research into providing formal bases for
many areas of computer science.

Elaine isn’t here :(

and ...

Elaine has no connection with Goldsmiths

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 23 / 52

Prof. Elaine Weyuker (Industrial Collaborator)

Elaine works at AT&T Labs-Research.

She has published widely in the area of schema theory and dataflow
analysis.

She is the originator of dataflow testing.

She is world renowned for her research into providing formal bases for
many areas of computer science.

Elaine isn’t here :(

and ...

Elaine has no connection with Goldsmiths

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 23 / 52

Prof. Elaine Weyuker (Industrial Collaborator)

Elaine works at AT&T Labs-Research.

She has published widely in the area of schema theory and dataflow
analysis.

She is the originator of dataflow testing.

She is world renowned for her research into providing formal bases for
many areas of computer science.

Elaine isn’t here :(

and ...

Elaine has no connection with Goldsmiths

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 23 / 52

Prof. Elaine Weyuker (Industrial Collaborator)

Elaine works at AT&T Labs-Research.

She has published widely in the area of schema theory and dataflow
analysis.

She is the originator of dataflow testing.

She is world renowned for her research into providing formal bases for
many areas of computer science.

Elaine isn’t here :(

and ...

Elaine has no connection with Goldsmiths

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 23 / 52

Prof. Elaine Weyuker (Industrial Collaborator)

Elaine works at AT&T Labs-Research.

She has published widely in the area of schema theory and dataflow
analysis.

She is the originator of dataflow testing.

She is world renowned for her research into providing formal bases for
many areas of computer science.

Elaine isn’t here :(

and ...

Elaine has no connection with Goldsmiths

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 23 / 52

A few of years ago...

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 24 / 52

A few of years ago...

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 25 / 52

A few of years ago...

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 26 / 52

A few of years ago...

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 27 / 52

A few of years ago...

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 28 / 52

A few of years ago...

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 29 / 52

A few of years ago...

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 30 / 52

Background – Program Slicing

Program Slicing gives us different views of the same program
...depending what we are interested in.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 31 / 52

Background – Program Slicing

Program Slicing gives us different views of the same program

...depending what we are interested in.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 31 / 52

Background – Program Slicing

Program Slicing gives us different views of the same program
...depending what we are interested in.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 31 / 52

Questions answered by Slicing

Which bits of big program P affect the final value of variable x?

Which bits of big program P affect the updating of this file?

Which bits of big program P affect the firing of this missile?

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 32 / 52

Questions answered by Slicing

Which bits of big program P affect the final value of variable x?

Which bits of big program P affect the updating of this file?

Which bits of big program P affect the firing of this missile?

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 32 / 52

Questions answered by Slicing

Which bits of big program P affect the final value of variable x?

Which bits of big program P affect the updating of this file?

Which bits of big program P affect the firing of this missile?

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 32 / 52

Commercial Slicing Tools: Kaveri/Indus

Kaveri is an eclipse plug-in front-end for the Indus Java slicer. It utilizes
the Indus program slicer to calculate slices of Java programs and then

displays the results visually in the editor. The purpose of this project is to
create an effective tool for simplifying program understanding, program

analysis, program debugging and testing.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 33 / 52

Commercial Slicing Tools: Codesurfer

“The backward slice from a program point p includes all points that may
influence whether control reaches p, and all points that may influence the

values of the variables used at p when control gets there.”

What the hell does may mean?

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 34 / 52

Commercial Slicing Tools: Codesurfer

“The backward slice from a program point p includes all points that may
influence whether control reaches p, and all points that may influence the

values of the variables used at p when control gets there.”
What the hell does may mean?

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 34 / 52

The Crux of the Problem

Slicing algorithms are conservative: They often keep in bits of the
program the could be left out.

A statement that a slicing algorithm thinks may affect a variable
often does not!

This leads to slices that are too big.

Small is beautiful. – Big slices aren’t very useful.

We want to find ways of producing smaller slices.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 35 / 52

The Crux of the Problem

Slicing algorithms are conservative: They often keep in bits of the
program the could be left out.

A statement that a slicing algorithm thinks may affect a variable
often does not!

This leads to slices that are too big.

Small is beautiful. – Big slices aren’t very useful.

We want to find ways of producing smaller slices.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 35 / 52

The Crux of the Problem

Slicing algorithms are conservative: They often keep in bits of the
program the could be left out.

A statement that a slicing algorithm thinks may affect a variable
often does not!

This leads to slices that are too big.

Small is beautiful. – Big slices aren’t very useful.

We want to find ways of producing smaller slices.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 35 / 52

The Crux of the Problem

Slicing algorithms are conservative: They often keep in bits of the
program the could be left out.

A statement that a slicing algorithm thinks may affect a variable
often does not!

This leads to slices that are too big.

Small is beautiful. – Big slices aren’t very useful.

We want to find ways of producing smaller slices.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 35 / 52

The Crux of the Problem

Slicing algorithms are conservative: They often keep in bits of the
program the could be left out.

A statement that a slicing algorithm thinks may affect a variable
often does not!

This leads to slices that are too big.

Small is beautiful. – Big slices aren’t very useful.

We want to find ways of producing smaller slices.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 35 / 52

Examples

We now give two examples showing wrong computation of dependence by
slicing algorithms:

The “c becomes one” example

The “Montreal Boat Trip” example (John Howroyd)

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 36 / 52

Examples

We now give two examples showing wrong computation of dependence by
slicing algorithms:

The “c becomes one” example

The “Montreal Boat Trip” example (John Howroyd)

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 36 / 52

Examples

We now give two examples showing wrong computation of dependence by
slicing algorithms:

The “c becomes one” example

The “Montreal Boat Trip” example (John Howroyd)

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 36 / 52

The “c becomes one” example

Which lines of this program affect the final value of z?

while (i<k)

<-----

{
if (c<5)

<-----

{
z=7;

<-----

c=y+c;

<-----

}
i=i+1;

<-----

}

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 37 / 52

The “c becomes one” example

Which lines of this program affect the final value of z?

while (i<k)

<-----

{
if (c<5)

<-----

{
z=7;

<-----

c=y+c;

<-----

}
i=i+1;

<-----

}

Conventional Program Slicers like Codesurfer will say “all of them!”

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 37 / 52

The “c becomes one” example

Which lines of this program affect the final value of z?

while (i<k)

<-----

{
if (c<5)

<-----

{
z=7;

<-----

c=y+c;

<-----

}
i=i+1;

<-----

}

but why?

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 37 / 52

The “c becomes one” example

Which lines of this program affect the final value of z?

while (i<k)

<-----

{
if (c<5) <-----
{

z=7; <-----
c=y+c;

<-----

}
i=i+1;

<-----

}

z=7 is control–dependent on (c<5)

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 37 / 52

The “c becomes one” example

Which lines of this program affect the final value of z?

while (i<k)

<-----

{
if (c<5) <-----
{

z=7;

<-----

c=y+c; <-----
}
i=i+1;

<-----

}

Because its in a loop c<5 is data-dependent upon c=y+c;

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 37 / 52

The “c becomes one” example

Which lines of this program affect the final value of z?

while (i<k) <-----
{

if (c<5) <-----
{

z=7;

<-----

c=y+c;

<-----

}
i=i+1;

<-----

}

The if is control–dependent the guard of the while

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 37 / 52

The “c becomes one” example

Which lines of this program affect the final value of z?

while (i<k) <-----
{

if (c<5)

<-----

{
z=7;

<-----

c=y+c;

<-----

}
i=i+1; <-----

}

The guard of the while is data-dependent on i=i+1

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 37 / 52

The “c becomes one” example

Which lines of this program affect the final value of z?

while (i<k)

<-----

{
if (c<5)

<-----

{
z=7;

<-----

c=y+c;

<-----

}
i=i+1;

<-----

}

So slicing on z gives the whole program

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 37 / 52

The “c becomes one” example

Which lines of this program affect the final value of z?

while (i<k)

<-----

{
if (c<5)

<-----

{
z=7;

<-----

c=y+c;

<-----

}
i=i+1;

<-----

}

Slicing Algorithms compute the transitive closure of the dependence
relation

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 37 / 52

The “c becomes one” example

Which lines of this program affect the final value of z?

while (i<k)
{

if (c<5)
{

z=7;
c=y+c; <-----

}
i=i+1;

}

But is z really dependent on this?

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 38 / 52

The “c becomes one” example

Which lines of this program affect the final value of z?

while (i<k)
{

if (c<5)
{

z=7;
c=y+c; <-----

}
i=i+1;

}

Clearly not because if we do execute c=y+c the value of z can’t change
any further, so it is irrelevant if we go through the true part of the if after
that.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 38 / 52

The “c becomes one” example

Which lines of this program affect the final value of z?

while (i<k)
{

if (c<5)
{

z=7;
c=y+c; <-----

}
i=i+1;

}

So Transitive closure of dependence doesn’t seem to be the most accurate
was of computing dependencies.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 38 / 52

The “c becomes one” example

Which lines of this program affect the final value of z?

while (i<k)
{

if (c<5)
{

z=7;
c=y+c; <-----

}
i=i+1;

}

As we have seen, dependence is not transitive.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 38 / 52

Conventional Slicing Removes Non–termination

while (true)
{

}
z=2;

What do we get if we slice on the final value of z?

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 39 / 52

Conventional Slicing Removes Non–termination

while (true)
{

}
z=2;

The loop is removed since z=2 is not data or control dependent on it.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 39 / 52

Conventional Slicing Removes Non–termination

while (true)
{

}
z=2;

So transitive closure of dependence can introduce termination.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 39 / 52

Conventional Slicing Removes Non–termination

while (true)
{

}
z=2;

So, formally a program p and its slice s need only agree in initial states
where p terminates.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 39 / 52

Conventional Slicing Removes Non–termination

while (true)
{

}
z=2;

So, formally a program p and its slice s need only agree in initial states
where p terminates.
So, there’s an even smaller slice of this program.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 39 / 52

Conventional Slicing Removes Non–termination

while (true)
{

}
z=2;

So, formally a program p and its slice s need only agree in initial states
where p terminates.
So, there’s an even smaller slice of this program.
The empty program – all statements can be removed.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 39 / 52

The Semantics of End–Slicing

Definition:

q is an end slice of p withe respect to variable v
if and only if

for all initial states σ
M[|p|]σ 6= ⊥ =⇒ M[|p|]σv = M[|q|]σv

Slicing is reflexive.

Slicing is transitive.

Slicing is not symmetric.

Slicing is not anti-symmetric.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 40 / 52

The Semantics of End–Slicing

Definition:

q is an end slice of p withe respect to variable v
if and only if

for all initial states σ
M[|p|]σ 6= ⊥ =⇒ M[|p|]σv = M[|q|]σv

Slicing is reflexive.

Slicing is transitive.

Slicing is not symmetric.

Slicing is not anti-symmetric.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 40 / 52

The Semantics of End–Slicing

Definition:

q is an end slice of p withe respect to variable v
if and only if

for all initial states σ
M[|p|]σ 6= ⊥ =⇒ M[|p|]σv = M[|q|]σv

Slicing is reflexive.

Slicing is transitive.

Slicing is not symmetric.

Slicing is not anti-symmetric.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 40 / 52

The Semantics of End–Slicing

Definition:

q is an end slice of p withe respect to variable v
if and only if

for all initial states σ
M[|p|]σ 6= ⊥ =⇒ M[|p|]σv = M[|q|]σv

Slicing is reflexive.

Slicing is transitive.

Slicing is not symmetric.

Slicing is not anti-symmetric.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 40 / 52

The Semantics of End–Slicing

Definition:

q is an end slice of p withe respect to variable v
if and only if

for all initial states σ
M[|p|]σ 6= ⊥ =⇒ M[|p|]σv = M[|q|]σv

Slicing is reflexive.

Slicing is transitive.

Slicing is not symmetric.

Slicing is not anti-symmetric.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 40 / 52

The “Montreal Boat Trip” example

Written on the white board by me at SCAM 2002 in Montreal!

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 41 / 52

The “Montreal Boat Trip” example

I asked, “ What is the slice on variable j”

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 41 / 52

The “Montreal Boat Trip” example

To which Ira Baxter wittily replied:

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 41 / 52

The “Montreal Boat Trip” example

Who cares!

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 42 / 52

The “Montreal Boat Trip” example

What is the slice on j at the end of the program?

while p(j)
{

if q(k) k=f(k);
else
{

k=g(k);

<-----

j=h(j);
}

}

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 43 / 52

The “Montreal Boat Trip” example

What is the slice on j at the end of the program?

while p(j)
{

if q(k) k=f(k);
else
{

k=g(k);

<-----

j=h(j);
}

}

Again, transitive closure of dependence gives the whole program.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 43 / 52

The “Montreal Boat Trip” example

What is the slice on j at the end of the program?

while p(j)
{

if q(k) k=f(k);
else
{

k=g(k); <-----
j=h(j);

}
}

But what about this line?

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 43 / 52

The “Montreal Boat Trip” example

What is the slice on j at the end of the program?

while p(j)
{

if q(k) k=f(k);
else
{

k=g(k); <-----
j=h(j);

}
}

It either causes the program to non–terminate or increases the number of
iterations of the loop before termination.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 43 / 52

The “Montreal Boat Trip” example

What is the slice on j at the end of the program?

while p(j)
{

if q(k) k=f(k);
else
{

k=g(k); <-----
j=h(j);

}
}

In initial states where the program terminates this line doesn’t affect the
final value of j.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 43 / 52

The “Montreal Boat Trip” example

What is the slice on j at the end of the program?

while p(j)
{

if q(k) k=f(k);
else
{

k=g(k); <-----
j=h(j);

}
}

So k=g(k) can be removed from the slice.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 43 / 52

The “Montreal Boat Trip” example

Linear Schemas

while p(j)
{

if q(k) k=f(k);
else
{

k=g(k);

<-----

j=h(j);
}

}

The program above is in fact a Schema

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 43 / 52

The “Montreal Boat Trip” example

Linear Schemas

while p(j)
{

if q(k) k=f(k);
else
{

k=g(k);

<-----

j=h(j);
}

}

it is in fact a linear Schema -because each function and predicate symbol
occurs at most once

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 43 / 52

The “Montreal Boat Trip” example

Linear Schemas

while p(j)
{

if q(k) k=f(k);
else
{

k=f(k);

<-----

j=h(j);
}

}

Now it’s not linear

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 43 / 52

The Data Flow Minimality Problem:

We have shown that transitive closure of dependence gives over–large
slices.

Small slices are good.

So is it possible to produce minimal slices at this level of abstraction?

A minimal slice is a slice all of whose proper sub–programs are not
slices.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 44 / 52

The Data Flow Minimality Problem:

We have shown that transitive closure of dependence gives over–large
slices.

Small slices are good.

So is it possible to produce minimal slices at this level of abstraction?

A minimal slice is a slice all of whose proper sub–programs are not
slices.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 44 / 52

The Data Flow Minimality Problem:

We have shown that transitive closure of dependence gives over–large
slices.

Small slices are good.

So is it possible to produce minimal slices at this level of abstraction?

A minimal slice is a slice all of whose proper sub–programs are not
slices.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 44 / 52

The Data Flow Minimality Problem:

We have shown that transitive closure of dependence gives over–large
slices.

Small slices are good.

So is it possible to produce minimal slices at this level of abstraction?

A minimal slice is a slice all of whose proper sub–programs are not
slices.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 44 / 52

The Semantics of Schemas

States = [Variables → Terms] ∪{⊥}
Interpretations = [Terms → {True,False}]
M: Schemas → Interpretations → States → States.

while p(j)
{

if q(k) k=f(k);
else
{

k=g(k);
j=h(j);

}
}

Show John’s Haskell Schema Interpreter readSch ”boat.sch”

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 45 / 52

The Semantics of Schemas

States = [Variables → Terms] ∪{⊥}

Interpretations = [Terms → {True,False}]
M: Schemas → Interpretations → States → States.

while p(j)
{

if q(k) k=f(k);
else
{

k=g(k);
j=h(j);

}
}

Show John’s Haskell Schema Interpreter readSch ”boat.sch”

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 45 / 52

The Semantics of Schemas

States = [Variables → Terms] ∪{⊥}
(Herbrand) Interpretations = [Terms → {True,False}]

M: Schemas → Interpretations → States → States.

while p(j)
{

if q(k) k=f(k);
else
{

k=g(k);
j=h(j);

}
}

Show John’s Haskell Schema Interpreter readSch ”boat.sch”

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 45 / 52

The Semantics of Schemas

States = [Variables → Terms] ∪{⊥}
Interpretations = [Terms → {True,False}]

M: Schemas → Interpretations → States → States.

while p(j)
{

if q(k) k=f(k);
else
{

k=g(k);
j=h(j);

}
}

Show John’s Haskell Schema Interpreter readSch ”boat.sch”

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 45 / 52

The Semantics of Schemas

States = [Variables → Terms] ∪{⊥}
Interpretations = [Terms → {True,False}]
M: Schemas → Interpretations → States → States.

while p(j)
{

if q(k) k=f(k);
else
{

k=g(k);
j=h(j);

}
}

Show John’s Haskell Schema Interpreter readSch ”boat.sch”

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 45 / 52

The Semantics of Schemas

States = [Variables → Terms] ∪{⊥}
Interpretations = [Terms → {True,False}]
M: Schemas → Interpretations → States → States.

while p(j)
{

if q(k) k=f(k);
else
{

k=g(k);
j=h(j);

}
}

Show John’s Haskell Schema Interpreter readSch ”boat.sch”

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 45 / 52

Decidability of Equivalence of Schemas

Two Schemas are equivalent if the are semantically equivalent under
all Herbrand interpretations.

The Decidability of Equivalence of Schemas implies the
computability of minimal slices.

Why?

Crudely, we can simply try all combinations of deleting statements
and check for equivalence of the resulting schema with the original.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 46 / 52

Decidability of Equivalence of Schemas

Two Schemas are equivalent if the are semantically equivalent under
all Herbrand interpretations.

The Decidability of Equivalence of Schemas implies the
computability of minimal slices.

Why?

Crudely, we can simply try all combinations of deleting statements
and check for equivalence of the resulting schema with the original.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 46 / 52

Decidability of Equivalence of Schemas

Two Schemas are equivalent if the are semantically equivalent under
all Herbrand interpretations.

The Decidability of Equivalence of Schemas implies the
computability of minimal slices.

Why?

Crudely, we can simply try all combinations of deleting statements
and check for equivalence of the resulting schema with the original.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 46 / 52

Decidability of Equivalence of Schemas

Two Schemas are equivalent if the are semantically equivalent under
all Herbrand interpretations.

The Decidability of Equivalence of Schemas implies the
computability of minimal slices.

Why?

Crudely, we can simply try all combinations of deleting statements
and check for equivalence of the resulting schema with the original.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 46 / 52

The Bad News

Paterson (1967):

Equivalence of Schemas is Undecidable.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 47 / 52

Not So Bad News

For Linear Schemas decidability of equivalence is an open problem.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 47 / 52

The Good News

Mike Laurence (2006)

For certain classes of Linear Schemas equivalence is decidable.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 47 / 52

Open Problems in Decidability to Investigate

Is equivalence of free conservative linear schemas decidable?

Yes

Is equivalence of free liberal linear schemas decidable?

Yes

Is equivalence of free linear schemas decidable?

Don’t know

Is equivalence of linear schemas decidable?

Don’t know

Is freeness of linear schemas decidable?

Don’t know

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 48 / 52

Open Problems in Decidability to Investigate

Is equivalence of free conservative linear schemas decidable? Yes

Is equivalence of free liberal linear schemas decidable?

Yes

Is equivalence of free linear schemas decidable?

Don’t know

Is equivalence of linear schemas decidable?

Don’t know

Is freeness of linear schemas decidable?

Don’t know

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 48 / 52

Open Problems in Decidability to Investigate

Is equivalence of free conservative linear schemas decidable? Yes

Is equivalence of free liberal linear schemas decidable?

Yes

Is equivalence of free linear schemas decidable?

Don’t know

Is equivalence of linear schemas decidable?

Don’t know

Is freeness of linear schemas decidable?

Don’t know

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 48 / 52

Open Problems in Decidability to Investigate

Is equivalence of free conservative linear schemas decidable? Yes

Is equivalence of free liberal linear schemas decidable? Yes

Is equivalence of free linear schemas decidable?

Don’t know

Is equivalence of linear schemas decidable?

Don’t know

Is freeness of linear schemas decidable?

Don’t know

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 48 / 52

Open Problems in Decidability to Investigate

Is equivalence of free conservative linear schemas decidable? Yes

Is equivalence of free liberal linear schemas decidable? Yes

Is equivalence of free linear schemas decidable?

Don’t know

Is equivalence of linear schemas decidable?

Don’t know

Is freeness of linear schemas decidable?

Don’t know

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 48 / 52

Open Problems in Decidability to Investigate

Is equivalence of free conservative linear schemas decidable? Yes

Is equivalence of free liberal linear schemas decidable? Yes

Is equivalence of free linear schemas decidable? Don’t know

Is equivalence of linear schemas decidable?

Don’t know

Is freeness of linear schemas decidable?

Don’t know

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 48 / 52

Open Problems in Decidability to Investigate

Is equivalence of free conservative linear schemas decidable? Yes

Is equivalence of free liberal linear schemas decidable? Yes

Is equivalence of free linear schemas decidable? Don’t know

Is equivalence of linear schemas decidable?

Don’t know

Is freeness of linear schemas decidable?

Don’t know

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 48 / 52

Open Problems in Decidability to Investigate

Is equivalence of free conservative linear schemas decidable? Yes

Is equivalence of free liberal linear schemas decidable? Yes

Is equivalence of free linear schemas decidable? Don’t know

Is equivalence of linear schemas decidable? Don’t know

Is freeness of linear schemas decidable?

Don’t know

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 48 / 52

Open Problems in Decidability to Investigate

Is equivalence of free conservative linear schemas decidable? Yes

Is equivalence of free liberal linear schemas decidable? Yes

Is equivalence of free linear schemas decidable? Don’t know

Is equivalence of linear schemas decidable? Don’t know

Is freeness of linear schemas decidable?

Don’t know

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 48 / 52

Open Problems in Decidability to Investigate

Is equivalence of free conservative linear schemas decidable? Yes

Is equivalence of free liberal linear schemas decidable? Yes

Is equivalence of free linear schemas decidable? Don’t know

Is equivalence of linear schemas decidable? Don’t know

Is freeness of linear schemas decidable? Don’t know

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 48 / 52

More Accurate Notions of Dependency

A new lazy trace semantics for Schemas for general Slicing

Characterisation of Slicing in terms of this new Semantics

Investigation of Decidability of Equivalence in terms of the new
Semantics

Extending the Syntax and Semantics of Linear Schemas to handle
more features e.g. functions and procedures.

New algorithms for computing dependency

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 49 / 52

More Accurate Notions of Dependency

A new lazy trace semantics for Schemas for general Slicing

Characterisation of Slicing in terms of this new Semantics

Investigation of Decidability of Equivalence in terms of the new
Semantics

Extending the Syntax and Semantics of Linear Schemas to handle
more features e.g. functions and procedures.

New algorithms for computing dependency

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 49 / 52

More Accurate Notions of Dependency

A new lazy trace semantics for Schemas for general Slicing

Characterisation of Slicing in terms of this new Semantics

Investigation of Decidability of Equivalence in terms of the new
Semantics

Extending the Syntax and Semantics of Linear Schemas to handle
more features e.g. functions and procedures.

New algorithms for computing dependency

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 49 / 52

More Accurate Notions of Dependency

A new lazy trace semantics for Schemas for general Slicing

Characterisation of Slicing in terms of this new Semantics

Investigation of Decidability of Equivalence in terms of the new
Semantics

Extending the Syntax and Semantics of Linear Schemas to handle
more features e.g. functions and procedures.

New algorithms for computing dependency

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 49 / 52

More Accurate Notions of Dependency

A new lazy trace semantics for Schemas for general Slicing

Characterisation of Slicing in terms of this new Semantics

Investigation of Decidability of Equivalence in terms of the new
Semantics

Extending the Syntax and Semantics of Linear Schemas to handle
more features e.g. functions and procedures.

New algorithms for computing dependency

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 49 / 52

Plan for the Schemas Project

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 50 / 52

Publications so Far

Michael R. Laurence, Sebastian Danicic, Mark Harman, Rob Hierons, and
John Howroyd.
Equivalence of conservative, free, linear program schemas is decidable.
Theoretical Computer Science, 290:831–862, January 2003.

Sebastian Danicic, Chris Fox, Mark Harman, Robert Mark Hierons, John
Howroyd, and Mike Laurence.
Slicing algorithms are minimal for programs which can be expressed as
linear, free, liberal schemas.
The Computer Journal, 48(6):737–748, 2005.

Sebastian Danicic, Mark Harman, Robert Mark Hierons, John Howroyd, and
Mike Laurence.
Equivalence of linear, free, liberal, structured program schemas is decidable
in polynomial time.
Theoretical Computer Science, 2006.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 51 / 52

Publications so Far

Michael R. Laurence, Sebastian Danicic, Mark Harman, Rob Hierons, and
John Howroyd.
Equivalence of conservative, free, linear program schemas is decidable.
Theoretical Computer Science, 290:831–862, January 2003.

Sebastian Danicic, Chris Fox, Mark Harman, Robert Mark Hierons, John
Howroyd, and Mike Laurence.
Slicing algorithms are minimal for programs which can be expressed as
linear, free, liberal schemas.
The Computer Journal, 48(6):737–748, 2005.

Sebastian Danicic, Mark Harman, Robert Mark Hierons, John Howroyd, and
Mike Laurence.
Equivalence of linear, free, liberal, structured program schemas is decidable
in polynomial time.
Theoretical Computer Science, 2006.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 51 / 52

Publications so Far

Michael R. Laurence, Sebastian Danicic, Mark Harman, Rob Hierons, and
John Howroyd.
Equivalence of conservative, free, linear program schemas is decidable.
Theoretical Computer Science, 290:831–862, January 2003.

Sebastian Danicic, Chris Fox, Mark Harman, Robert Mark Hierons, John
Howroyd, and Mike Laurence.
Slicing algorithms are minimal for programs which can be expressed as
linear, free, liberal schemas.
The Computer Journal, 48(6):737–748, 2005.

Sebastian Danicic, Mark Harman, Robert Mark Hierons, John Howroyd, and
Mike Laurence.
Equivalence of linear, free, liberal, structured program schemas is decidable
in polynomial time.
Theoretical Computer Science, 2006.

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 51 / 52

Mike – Over to you!

Sebastian Danicic () Linear Schemas for Program Dependence November 21, 2006 52 / 52

	Introduction
	History of Schema Theory
	Aims of the Schemas Project
	People
	Motivation - Examples from Slicing
	Examples
	Dataflow Minimality and Semantics
	Decidability of Equivalence
	Future Work

